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Abstract

Unmeasured confounding is a major challenge for identifying causal relationships
from non-experimental data. Here, we propose a method that can accommodate
unmeasured discrete confounding. Extending recent identifiability results in deep
latent variable models, we show theoretically that confounding can be detected
and corrected under the assumption that the observed data is a piecewise affine
transformation of a latent Gaussian mixture model and that the identity of the
mixture components is confounded. We provide a flow-based algorithm to estimate
this model and perform deconfounding. Experimental results on synthetic and
real-world data provide support for the effectiveness of our approach.

1 Introduction

One of the fundamental challenges of causal inference is the separation of the causal effect from
confounding, that is, from statistical dependencies that arise from common causes of the candidate
cause and effect. In Pearl’s notation [27], this difference is captured by the key contrast between
the merely predictive conditional probability P (Y |X) and the causal effect P (Y |do(X)). When
confounding variables are observed, confounding can be controlled for by a variety of covariate
adjustment techniques [12, 1]. The ability to also deconfound the causal effect in the case of
unobserved confounding is one of the motivations for the use of randomized controlled trials. The
challenge of how to deconfound the causal effect without experimentation has given rise to a variety of
approaches that require different assumptions for identification. These include instrumental variable
approaches [12], approaches based on parametric assumptions (such as in additive noise models
[31, 10], linear models [15, 16] or binary Gaussian mixture models [6]), or settings where observed
confounding is assumed to be representative of unobserved confounding [2].

In this paper, we contribute to the effort to address unmeasured confounding in purely observational
settings by imposing restrictions on the model class. Unlike previous work, we do this by reformulat-
ing a confounded cause-effect model as an equivalent latent variable model with a Gaussian mixture
prior (see Figure 1). We then leverage the results in [21] that assure identification (up to an affine
transformation) of the latent Gaussian mixtures under the assumption of a piecewise affine mapping
between latent and observed variables. We show that further constraints on this model specific
to our setting (notably causal order) allow to identify causal effects despite (discrete) unobserved
confounding. Implementing this approach with a flow-based deep generative model, we show on both
synthetic and real data how to estimate the desired causal effects despite unmeasured confounding.

Preprint. Under review.
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Figure 1: On the left,X causes Y and is confounded by H . On the right, observed variablesW =
(X,Y ) are generated by latent variables Z, whose identifiability up to affine transformation under
model restrictions is shown by [21]. We combine knowledge of causal structure with identifiability
results for latent variable models to estimate causal effects despite unmeasured confounding (middle).

Notations. We will use uppercase letters for random variables (e.g. X) and lowercase for determin-
istic ones (e.g. a realization x of X). Functions and variables that may be vector-valued will be
denoted in bold (e.g. X, f , ...), and > denotes transposition. We will use non-bold capital letters
for (deterministic) matrices, e.g. A. P (.) denotes a probability distribution, while p(.) denotes the
corresponding density with respect to the Lebesgue measure.

2 Background

Canonical cause-effect model in causal inference. In causal inference, the canonical cause-effect
model “X causes Y ” can be represented by a pair of so-called structural equations [27]:

X := fX(ZX) , Y := fY (X,ZY ) , with (ZX ,ZY ) ∼ PZ(ZX ,ZY ) , (2.1)

where the exogenous variables (ZX ,ZY ) are idiosyncratic error terms representing the influence of
external factors on the system, and (fX ,fY ) are the causal mechanisms associated to each variable.
Causal effects of interests are entailed by the mechanism fY that describes the influence ofX on Y .
Confounding then posits the existence of a common cause H that influences both idiosyncratic error
terms, such that they become dependent when marginalizing with respect to H , leading to

PZ(ZX ,ZY ) =
∑
h P (ZX |H = h)P (ZY |H = h)P (H = h) 6= PZX

(ZX)PZY
(ZY ) ,

as depicted in the causal diagram of Figure 1a. Accounting for this dependence is necessary for the
unbiased estimation of the causal effect but is difficult as ZX , ZY and H are typically unobserved.1

Identifiability of latent variable models. The field of latent variable models (LVM) [20, 25]
addresses the learnability of models mapping latent variables Z to observationsW using a so-called
mixing function Ψ such that W = Ψ(Z), using only samples from the observation distribution
P (W ). Identifiability results provide guaranties that, given infinite data, the ground truth (Ψ,Z) can
be recovered from P (W ) in the large sample limit, up to well-characterized ambiguities. We build
on results presented by [21], who consider a generative model for observed variablesW of the form:

H ∼ Cat(KH ,π) ,

Z | H = h ∼ N (µh,Σh) ,

W = Ψ(Z),

where Cat(K,π) denotes a categorical distribution with K categories and an associated vector
of event probabilities π. Assuming that Ψ is a piecewise affine injective function (which can be
implemented by ReLU networks), [21] show identifiability of Ψ and Z up to an affine transformation
[21, Theorem 3.2]. This model is depicted in Figure 1c.

1We provide a brief description of the formalism of structural causal models in Appendix B.
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3 Theoretical framework for discrete decounfounding

3.1 General setting

Mapping cause-effect models to LVMs. We consider the above cause-effect model in a setting
where an observed n-dimensional vectorX causes an observed m-dimensional effect vector Y , and
where, as commonly assumed, exogenous variables have matching dimensions, i.e. ZX ∈ Rn and
ZY ∈ Rm.2 We explore the idea that exogenous variables ZX ,ZY and mechanisms fX ,fY can be
used to construct a corresponding LVM, from which we can then leverage the identifiability results to
address unmeasured confounding. The key ideas are the following: We can replace the generative
mechanism of Y based onX by one based on Z1 by rewriting

Y := fY (X,ZY ) = fY
(
fX(ZX),ZY

)
, ΨY (ZX ,ZY ). (3.1)

If we additionally introduce ΨX(ZX ,ZY ) , fX(ZX) and concatenate the exogenous variables into
the latent vector Z= (ZX ,ZY ), we can build a well-defined mapping Ψ : Rm+n 7→ Rm+n from
exogenous latent variables to observed variablesW =(X,Y ) such that Ψ(Z)=

(
ΨX(Z),ΨY (Z)

)
.

This corresponds to the LVM diagram of Figure 1c. Analogous to the causal model in Figure 1a,
confounding is induced by a latent variable H that causes both ZX and ZY .

Leveraging LVM identifiability to address confounding. Concretely, to connect LVM identifia-
bility to causal deconfounding, we introduce the following assumptions on the cause-effect model.

Assumption 3.1. The function fY : Rn ×Rm → Rm is Continuous Deterministic Piecewise Affine
(CDPA)3 and for all x ∈ Rn, zY 7→ fY (x, zY ) is injective.

Additionally, we make an assumption about the relation between ZX andX:
Assumption 3.2. fX : Rn → Rn is CDPA and invertible.

In combination, these two assumptions will ensure the mapping Ψ belongs to the function class
analyzed in [21]. The final key to identifiability is a Gaussian mixture model of the exogenous
variables and their confounding induced by H .
Assumption 3.3. The exogenous variables are generated according to the following model:

H ∼ Cat(KH ,π) , (3.2)
L|H ∼ Cat(KL, p(L|H)) , Q|H ∼ Cat(KQ, p(Q|H)) , (3.3)

ZX |L= l ∼ N (µl,Σ
X
l ) , ZY |Q=q ∼ N (νq,Σ

Y
q ) , (3.4)

where at least one mixture component l that occurs with non-zero probability has ΣXl positive definite.

Note that, without loss of generality, we make the separation of the effect of H on the cause vs. the
effect side explicit with Eq. (3.3). We now turn to proving that this model setup and the discussed
assumptions allow us to identify causal quantities.

3.2 Identifiability

Theorem 3.4. Under Assumptions 3.1, 3.2, and 3.3 the mixture components and the causal mecha-
nism for the effect (ZY ,fY ) in Eq. (3.1) is identifiable up to an invertible affine reparameterization
of ZY . More precisely, let (Z̃Y , f̃Y ) be the latent variable and mechanism obtained by fitting the
model to the observation distribution P (X,Y ), then we have, for some (m×m) invertible matrix S
and some (m× 1) vector b

fY (x, zY ) = f̃Y (x, SzY + b) , and Z̃Y = SZY + b .

Sketch of the proof (see Appendix A for the complete version). We will consider a latent variable
model solution Ψ̃ : Z → W satisfying all assumptions and fitting the observational distribu-
tion P (X,Y ) perfectly. We study its relationship to the corresponding ground truth mapping Ψ

2The special cases of scalar cause and/or effect are included.
3CDPA functions can be easily implemented by feedforward neural networks with ReLU activation functions.
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which generates the observations. This will then be linked to the cause-effect model solution f̃Y and
its associated ground truth model fY . The demonstration can be decomposed into three parts:

(1) The identifiability theory in [21, Theorem 3.2] implies that the latents Z can be recovered up
to an affine transformation; more formally, the map Ψ̃−1 ◦Ψ associating ground truth latents Z to
recovered ones Z̃ is an affine transformation with its linear map represented by a square matrix A. In
addition, the constraint on the causal order enforces that ΨX is not dependent on ZY , which imposes
a block triangular structure on A, encoding that the true ZY does not influence the recovered Z̃X .

(2) By Assumption 3.3 the mixture components’ cross-covariance matrices between ZX and ZY
coordinates is zero for both the ground truth Z and recovered Z̃. Identification up to affine transfor-
mation and permutation of these mixture components further constrains the relation between ground
truth and recovered latents by forcing the matrix A to be block diagonal.

(3) The final relation between ground truth and recovered cause-effect model is deduced from the
shared structure of Ψ̃ and Ψ, and the block diagonality of A.

Note that the results by [21] alone, allow the ambiguity of the identifiability results to be a general
affine transformation without any restriction, which precludes the separation of the causal and the
confounded variation in the observed Y and consequently the identification of the causal effect.

Provided the data generating process fits our assumptions, then our result guarantees that, in the
infinite sample limit, we retrieve the ground truth causal mechanism up to some ambiguities. We now
show that these remaining ambiguities do not affect our ability to estimate causal quantities such as
the average treatment effect.

Estimation of causal effects. We now show that Theorem 3.4 implies that the average treatment
effect is identifiabile, even though P (L,H,Q) may remain unidentified. Given the graph in Figure 1b,
we can see that ZY satisfies the backdoor criterion [27], such that we can estimate the following
interventional quantities by the adjustment formula:

E
[
Y |do(X = x)

]
=

∫
y p
(
y|do(X = x)

)
dy =

∫ ∫
y p
(
y|X = x, zY

)
dzY dy . (3.5)

That is, Theorem 3.4 provides the basis to deconfound the causal effect:

Proposition 3.5. Under the assumptions of Theorem 3.4, assume additionally strict positivity of
p(x, zY ) for almost all zY . Then, for any x in the support of P (X), E

[
Y |do(X = x)

]
is identifi-

able from the observation of P (X,Y ) with adjustment formula

E
[
Y |do(X = x)

]
= EZY ∼P (ZY )

[
f̃Y (x, SZY + b)

]
= EZ̃Y ∼P (Z̃Y )

[
f̃Y (x, Z̃Y )

]
, (3.6)

where P (Z̃Y ) and f̃Y is the solution identified in Theorem 3.4.

See Appendix A for the proof. Importantly, we cannot rely on Z1 as an adjustment variable, as it
violates positivity by construction of our model (it is deterministically related toX), in line with the
point made by [3]. Positivity of p(x, zY ) is achieved under mild assumptions: it only requires the
occurrence of one non-degenerate mixtures component of Z in the observational setting.

Proposition 3.6. If there exists (l, q) such that P (L = l, Q = q) > 0 and both ΣXl and ΣYq are
positive definite, then the positivity assumption on p(x, zY ) in Proposition 3.5 is satisfied.

See Appendix A for the proof. Overall, the positive definite assumptions required on covariance
matrices in Theorem 3.4 and Proposition 3.6 emphasize the importance of having independent
(Gaussian) noise injected in both mechanism fX and fY for identification.

4 Flow-based implementation

We use flow-based models [25] to estimate the discrete confounding model. Such models learn the
(possibly complex) distribution of observed data by using successive transformations of a simpler
base distribution. The trained model can then be used to sample from the data distribution. This
generative aspect of flow-based models lends itself to our deconfounding application as it allows
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Figure 2: (Flow model implementation) The sequence of transformations that make up one block
are composed of an additive coupling bijection from layer l to l + 1, see lines 5 and 6, a causal
transformation with a partly-diagonal structure (ZY node does not influence other nodes), see line 7,
from l + 1 to l + 2, and a permutation layer from l + 2 to l + 3. Line numbers refer to Algorithm 1.

us to sample from P (Z̃Y ), which is the latent variable that blocks the backdoor path and is used in
Eq. (3.6). Unlike other generative models such as Variational Autoencoders, flow-based models allow
optimization of the exact likelihood of the data, which seems to be critical for their use to estimate
causal quantities precisely. Variational Autoencoders with a Gaussian mixture prior [17], as used
in experimental section of [21], have proven not to perform as well as flow-based models for the
application at hand.4

Algorithm 1 One DeconFlow transfor-
mation block, from layer l to l + 3

1: Input: z(l)
2: Output: z(l+3)

3: z(l)X , z
(l)
Y ← split(z(l))

4: z(l)a , z
(l)
b ← split(z(l)X )

5: t(l) ← ft(z
(l)
a )

6: z(l+1)
b ← z

(l)
b + t

(additive coupling)
7: z(l+2) ← Bz(l+1)

(causal transform: zX → zY )
8: z(l+3)

X ← Pz
(l+2)
X

9: z(l+3)
Y ← z

(l+2)
Y

In flow-based models, observed variables w :=
(x,y) ∈ Rm+n are expressed as a transformation
T of z, w = T (z), sampled from a base distribu-
tion p(z). Requiring T to be differentiable and in-
vertible licences the use of the change of variables
formula to express the log-likelihood of the data as
log pw(w) = log pz(z) + log |det JT (z)|−1 or, using
that z = T−1(w) and swapping inverse and determi-
nant,

log pw(w) = log pz(T−1(w)) + log |det JT−1(w)|.
(4.1)

The log-likelihood of the data can thus be expressed by
evaluating the base distribution at the transformed w
and accounting for the resulting change in volume by
adding the log determinant of the inverse Jacobian of
that transformation. To represent the Gaussian mixture
structure of the latent variables in our generative model,
see Eq. (3.4), we use a Gaussian mixture model as
a base distribution.5 The GMM is characterized by
mixture weights (πk), means (µk) and covariances (Σk):

p(z) =
∑K
k=1 πkN (z;µk,Σk), (4.2)

where K is the number of mixture components, πk are the mixture weights, and N (z;µk,Σk) with
diagonal covariance matrix denotes the Gaussian distribution for component k.

In our causal inference setting, only transformations that respect the causal order of observed variables
w are admissible. To ensure that information flows only in the causal direction from x to y, we need
to restrict the transformations to be lower-triangular. We first introduce a simple one-layer, linear
flow, which allows us to introduce the required restriction. In the subsequent section, we introduce a
multi-layered model with additive coupling bijections and triangular causal transformations that can
express more complex distributions.

4We have implemented VAEs with appropriate architectural restrictions in experiments (not reported here)
that did not exactly recover the true causal effects even in the simple m = n = 1 linear case.

5A GMM base distibution in flow-based models has previously been used by e.g. [30].
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4.1 One-layer linear flow

In the simplest proof-of-concept model, where we assume we observe 2D Gaussian mixtures in w
resulting from linear mechanisms, the transformation T is then a block lower triangular matrix,

A =

(
a11 0
a21 a22

)
. (4.3)

The log-likelihood then reduces to log pw(w) = log pz(A−1w) +
∑2
i=1 log |aii|. We apply this

simple model to simulated data with a one-dimensional cause below.

4.2 Additive coupling bijection

Figure 3: With a one-dimensional cause and
one-dimensional confounder, m = n = 1,
performance can be evaluated by comparing
the DeconFlow-adjusted slope parameter es-
timates (orange crosses) to the ground truth
(green circles). In addition, we report the
naive estimates that are obtained without ad-
dressing confounding (red triangles).

To model more complicated distributions of w, we
propose a flow-based model where one transforma-
tion block is composed of an additive coupling layer
[4] and a causal tranformation akin to a masked au-
toregressive layer [26]. Specifically, the transforma-
tions in one block are described in Algorithm 1. Su-
perscript (l) denotes layer index, line 3 splits zX
into the first n/2 (rounded up if necessary) dimen-
sions (subscript a) and the remaining dimensions
(subscript b). The function ft in line 5 is parame-
terized by a neural network with ReLU activation
function, the transformation matrix in line 7 has a
partly-diagonal form,

B =

[
diag(a) 0
b bd,d

]
with a =

[
a1,1 · · · ad−1,d−1

]
and b =[

ad,1 · · · ad,d−1
]
, and P (only acting on zX , not

zY ) in line 8 is a permutation matrix. By restricting
B in this way and permuting only zX , we ensure that
x influences y (but not vice versa), which reflects
the assumed causal structure. Note that lines 5 and 6
differ from widely-used coupling bijections (which
would additionally multiply z(l)b by a factor that is
learned by ft, as proposed in [5]) to ensure that the
transformation is piecewise affine, which we require
for identifiability. In practice, NB of such blocks are
concatenated as depicted in Figure 2.

We can write the log-likelihood of w given these transformations as

log pw(w) = log pz(z(0)) +
∑L
l=1

∑d
i=1 log |a(l)ii | (4.4)

where z(0) = Tw with T = T(l=0) ◦ . . . ◦ T(l=L) denoting the composition of the transformations

described above (similarly for its inverse, T
−1

) and pz being a Gaussian mixture model with diagonal
covariances, as in Eq. (4.2). The transformation in line 6 is volume-preserving and has a unit Jacobian
determinant. Therefore, its logarithm is equal to zero and vanishes in the log likelihood. Since the
Jacobian ofB is lower-triangular, its determinant is the product of the diagonal elements. We then
optimize the log-likelihood in Eq. (4.4) using backpropagation.

4.3 Closing the backdoor path through sampling

Given our model structure, conditioning on ZY blocks the backdoor path betweenX and Y . This
motivates the following strategy to estimate E[Y |do(X = x)] from observed data. We transform the
observed samples of w to z by inverting Ψ using our trained model. We then sample Np times from
the empirical distribution of Z̃Y to compute

w = (x,y) = 1
Np

∑Np

z̃Y ∼P (Z̃Y )
T (zX , z̃Y ) , (4.5)
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where x=x because fX is invertible. This yields the empirical counterpart to Eq. (3.6),

E[Y |do(X = x)] ≈ y =: θ̂(x). (4.6)

5 Simulation Study

5.1 Data Generation

Given the generative model, we simulate data from a Generalized Additive Model (GAM, [8]) as
follows. First, we randomly generate parameters of the joint distribution P (L,Q) such that there is a
correlation between L and Q. Second, we generate ZX ∼ N (µhX

,ΣhX
) and ZY ∼ N (µhY

, σ2
hX

)

where µhX
∼ U(1, 4) and µhY

∼ U(0, 1), ΣhX
= I × 0.01 and σ2

hX
= 0.01. We focus on the case

with m = 1, a scalar effect, in the simulation study.

Figure 4: See Section 5.2 for de-
scription.

To generate X and Y , we then parameterize the influence of
ZX on X and Y as well as the influence of ZY on Y with
random CDPA functions,

X=τ1(ZX) , and Y =βτ2(ZX) + τ3(ZY ) + ε , (5.1)

where β is the true causal effect, and ε ∼ N (0, 0.01). Inspired
by [9], the functions τ1, τ2, and τ3 are randomly initialized
residual-flow type neural networks designed to generate an
invertible piecewise affine transformation of data. The architec-
ture consists of an initial linear layer, followed by a series of
five ResNet blocks, and concludes with a final linear layer to
produce the transformed output. Each ResNet block contains
two linear layers with LeakyReLU activations and a skip con-
nection, which adds the input of the block to its output. Note
that the model class described in Eq. 5.1 is not covering the
whole set of models considered in the theory. Notably, the
effects of ZX and ZY on Y are not required to be additive for
our theoretical results to hold.

Evaluation metric in linear case with n = m = 1. When
τ1, τ2, and τ3 are identity mappings, we evaluate the ability of
our method to deconfound by comparing the estimated slope
parameter with the true causal effect β. In the linear case,
the estimated parameter can be read off the estimate of the
transformation matrix A in (4.3): β̂ = a21

a11
.

Evaluation metric in the nonlinear case. When τ1, τ2, and
τ3 are random injective mappings, we evaluate the ground truth θ∗(x) := E[Y |do(X = x)] using
Eq. (3.6) but for the ground truth model. We compare θ∗(x) with the estimate defined in Eq. (4.6):

RMSE =

√
Ex∼P (X)

[(
θ̂(x)− θ∗(x)

)2]
(5.2)

For comparison, we report a baseline RMSE that is obtained when the conditional density is erro-
neously used as a causal effect estimate:

RMSEnaive =

√
Ex∼P (X)

[(
E(Y |x)− θ∗(x)

)2]
. (5.3)

5.2 Results

Linear one-layer, identity mapping. First we generate 10,000 samples for the simple setting when
n = m = 1, and τ1, τ2, τ3 all being identity mappings, with KL = KQ = 2, and apply the simple
one-layer linear flow described in Section 4.1. In this case, the observed data is a Gaussian mixture.
Therefore, we have a setting in which the estimation procedure focuses solely on disentangling
causal from confounded variation without additionally learning the mapping from observed data to
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a Gaussian mixture model. This setting serves as proof-of-concept of the deconfounding strategy.
Results are shown in Figure 3. It can be seen that the naive parameter estimates that are obtained
by regressing observed Y on observed X are biased in arbitrary directions. Using DeconFlow,
we recover estimates of E[Y |do(X = x)], which we regress on x to compute the deconfounded
parameter estimates that almost perfectly match the ground truth.6

Nonlinear, invertible piecewise affine transformations. Next we generate data with n = 5, m =
1 and τ1, τ2, τ3 random invertible piecewise affine functions (as described in Section 5.1) and
KL = KQ = k for k ∈ {2, 3}, 10,000 observations. Figure 4 shows RMSE, see Eq. (5.2), and
RMSEnaive, see Eq. (5.3). The x-axis shows mutual information between discrete variables L and
Q as a measure for the strength of confounding. DeconFlow decreases the error incurred when
estimating E[Y |do(X = x)] without observing the discrete confounder substantially. What we
achieve here is the estimation of a nonlinear causal quantity, E[Y |do(X = x)], without observing
the latent quantity that induces the discrepancy between it and E[Y |x].7

6 Application

We use data on twin births in the USA collected around 1990, which has been used before by [23] to
illustrate causal inference methods. It contains measures of birth weight of newborn twins with about
two dozen additional control covariates, such as parental education, number of prenatal visits, etc. for
about 32,000 twins (and their parents). See Appendix C for a complete list of variables. The dataset
lends itself to our setting because most of the variables are discrete and can serve as confounders. At
the same time, some ordinal variables are also recorded. We choose as causes those ordinal variables
so that we can approximate them with continuous variables by adding uniformly distributed noise.
We do this because our model requires continuous cause variables and discrete confounding variables.

Figure 5: See Section 6 for
description.

From the set of covariates {X1, . . . , XK} we select the three ordinal
variables that are directly related to the mother as observed causes:
mother’s age, gestation type, and mother’s education, and denote them
byX = {X1, X2, X3}. We use birth weight of the first-born twin as
target variable, Y , and treat all remaining covariates as confounders,
denoted by V = {X4, . . . , XK}. This allows us to estimate “true”
causal effects when we treat the confounders as observed, and test
whether DeconFlow can recover these given only the data about X
and Y .

Predicting Y using least-squares regression, we estimate the parameter
vector for X once when controlling for V (denoted β∗) and once
when not controlling for V (denoted β̂). We run our deconfounding
approach as described in Section 4.3 using only {X, Y }, which yields
our estimate of θ̂(x) = E[Y |do(X = x)]. We then regress θ̂(x) onX
to estimate our debiased parameter vector, β̃. We can evaluate whether
our method can account for the confounders V (that are unobserved
from its perspective) by comparing β∗ with β̂ and β̃.

We run DeconFlow for multiple seeds and hyperparameters. In Fig-
ure 5, for each of the three cause variables (mother’s age, gestation
type, and mother’s education), we report i) the slope parameter of
that cause variable in a regression of Y on the three causes (red tri-
angle), ii) the slope parameter of that cause variable in a regression
of Y on the three causes and the observed confounders (green dot),
iii) the average slope parameter of that cause in a regression of the
DeconFlow-adjusted target variable Ỹ on the three causes for 32 runs
of DeconFlow (orange cross), as well as a boxplot of the underlying
distribution of this parameter. For causes mother’s age and mother’s
education, we observe that our method yields mean parameter estimates that are closer to β∗ than β̂.
For gestation type, we find β̃ to be lower than both β∗ and β̂.

6Experiments are run on AWS Deep Learning AMI, with 36 vCPUs, runtime about 3 hours.
7Experiments are run on AWS Deep Learning AMI, with 96 vCPUs, runtime about 20 hours.
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While we consider similar β∗ and β̃ as evidence that our method accounts for V without observing it,
we stress that β∗ might in fact differ from the true parameter vector because of residual confounding
that is not captured by V . That is, a discrepancy between β∗ and β̃ might indicate the existence of
additional confounders unmeasured in the dataset, rather than a shortcoming of our method. For
instance, the discrepancey between β̃ and β∗ for gestation type could be due to additional unmeasured
confounders.

7 Discussion

While there is a large literature on using measured confounders to deconfound causal effect estimates
(see e.g. [1]), or to gauge the sensitivity to unmeasured confounders by benchmarking against mea-
sured confounders in treatment effect estimation [2] or policy learning [18, 24], work on accounting
for unmeasured confounders without such benchmarks is scarce. In the following we provide a
brief overview of related work that addresses unmeasured confounding without access to observed
confounders.

One way to tackle unmeasured confounding is to make assumptions on the independence of causal
mechanisms (ICM) [28, 14]. For instance, [15, 16] formalize ICM in multivariate linear models to
estimate a degree of confounding. ICM can also be seen as motivating additive noise models as
used in [13], which is similar to our approach in the sense that a latent confounder is learned from
observed variables. However, this method does not allow for both a causal and a confounding effect
between the two variables.

Even without implicit or explicit motivation through ICM, restricing model classes can help to address
unmeasured confounding. For instance, assuming linear relations and non-Gaussian variables yields
identifiability of a number of causal properties [29]. In this model class, [10] show how independent
component analysis (ICA) with an overcomplete basis (recovering more source variables than there
are observed signals), can help to theoretically identify, up to some remaining ambiguity, the latent
confounder and causal effect. However, practical algorithms that reliably estimate an overcomplete
basis are lacking and require additional assumptions (such as sparsity of the mixing matrix). Methods
for (nonlinear) ICA with equal number of sources and signals include e.g. [19, 11] but these require
observed auxiliary information (such as environment variables) or assumptions like ICM [7]. None
of these methods can address unmeasured confounding in a principled and practical way, which is the
goal of our proposed method.

Limitations. As all causal inference techniques, the proposed methodology relies on assumptions
that, if not satisfied, can cast doubt on causal effect estimates that are produced using the method.
While the discrete nature of the confounding we are considering has applications in a variety of
domains (e.g., controlling for batch effects in high-throughput sequencing data [22]), it is a substantial
assumption that needs to be taken into account by practitioners. Furthermore, we restrict the latent
variables to follow a Gaussian mixture model and the function mapping from latent to observed
variables to be piecewise affine and injective. While this is a very flexible model class, how our causal
effect identification result generalizes to the case where the ground truth model does not strictly
belong to this class remains an open question.

8 Conclusion

We propose a method to address unmeasured discrete confounding in nonlinear cause-effect models.
By mapping a confounded causal model to an equivalent latent variable model, we can leverage iden-
tifiability results in the literature on such models. We demonstrate that, under specific assumptions, it
is possible to identify causal effects despite the presence of unmeasured confounders. We introduce a
flow-based algorithm that can correct for this type of unmeasured confounding. The empirical results
on both synthetic and real-world data provide evidence of the effectiveness of our approach.

As such, this work is an effort at building a bridge between the literature on causal inference that uses
constraints on function classes and deep latent variable models. The usefulness of deep latent variable
models have successfully been shown in a variety of applications and has spurned an interested in
analyzing their identifiability properties, whose connections to causal inference problems we explore
here.
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Future work may investigate how the proposed strategy can be extended to more complex causal
graphs, other model classes, and other estimable causal quantities such as counterfactuals.
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Appendices

A Proof of main text results

Theorem 3.4. Under Assumptions 3.1, 3.2, and 3.3 the mixture components and the causal mecha-
nism for the effect (ZY ,fY ) in Eq. (3.1) is identifiable up to an invertible affine reparameterization
of ZY . More precisely, let (Z̃Y , f̃Y ) be the latent variable and mechanism obtained by fitting the
model to the observation distribution P (X,Y ), then we have, for some (m×m) invertible matrix S
and some (m× 1) vector b

fY (x, zY ) = f̃Y (x, SzY + b) , and Z̃Y = SZY + b .

Proof. Step 1: Affine identifiability.

The above model can be rewritten as a piecewise affine injective mapping
Ψ : Z → X × Y , (A.1)[

zX
zY

]
7→
[

fX(zX)
fY (fX(zX), zY )

]
. (A.2)

Therefore we get affine identifiability from [21, Theorem 3.2].

Step 2: Form restriction on the affine transformation due to partial observation.8 Assume another
solution f̃ , it can also be rewritten as an injective mapping

Ψ̃ : Z → X × Y , (A.3)[
zX
zY

]
7→

[
f̃X(zX)

f̃Y (fX(zX), zY )

]
. (A.4)

By affine identifiability, Ψ̃−1 ◦Ψ is an affine map z 7→ Az + b. From the above we deduce that9

A =

[
T 0
U S

]
. (A.5)

with U an m× n row vector, T an invertible matrix and S a non-vanishing scalar (due to invertibility
of both functions).

Step 3: Further form restriction due to non-degeneracy of intra-mixture component covariances.
Let us consider the ground truth distribution of Z: due to Assumption. 3.3 it is a Gaussian mixture,
whose mixture components are indexed by {(l, q)}l=1..KL;q=1..KQ

and whose associated covariances
are of block diagonal of the form

Σl,q =

[
ΣXl 0
0 ΣYq

]
.

Moreover, this is the same for the retrieved latent Z̃, up a permutation of indices (l, q) 7→ σ(l, q) and
the affine transformation introduced above (e.g. using Theorem C.2 in [21], stating that the mixture
components are identified up to a permutation and affine transformation). As a consequence we get,
for any index (l, q), that the corresponding mixture component covariance Σ̃σ(l,q) correspond Σl,q
after linear transformation of the Gaussian distribution by matrix A, i.e.

Σ̃σ(l,q) = AΣl,qA
> =

[
T 0
U S

] [
ΣXl 0
0 ΣYq

] [
T> U>

0 S>

]
(A.6)

=

[
T 0
U S

][
ΣXl T

> ΣXl U
>

0 ΣYq S
>

]
(A.7)

=

[
TΣXl T

> TΣXl U
>

UΣXl T
> SΣYq S

> + UΣXl U
>

]
. (A.8)

8Restriction on the ambiguity that results because we only recover g,Z up to affine transformation. The
point here is that it is a very special ambiguity, namely one where A is diagonal.

9This is because Ψ is lower triangular, therefore Ψ̃ is lower triangular, therefore Ψ̃−1 is lower triangular,
and therefore Ψ̃−1 ◦Ψ is lower triangular.
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where the off diagonal blocks must again be equal to zero by Assumption 3.3 applied to the covariance
of the mixture component of the obtained solution Σ̃σ(l,q). Exploiting this assumption further, let us
choose l such that ΣXl is positive definite. In that case, we can write for the off-diagonal block

UΣXl T
> = 0 (A.9)

UΣXl = 0 because T> is invertible (A.10)

U = 0 because ΣXl is positive definite and therefore invertible. (A.11)

Consequently,

A =

[
T 0
0 S

]
, (A.12)

which entails identifiability up to scalar affine reparametrization of Z2 and affine invertible transfor-
mation of Z1.

More precisely, for all z1, z2, the composition of Ψ̃−1 with Ψ is ambiguous up to a diagonal affine
transformation: [

z̃X
z̃Y

]
= Ψ̃−1 ◦Ψ(zX , zY ) =

[
TzX + b1
SzY + b2

]
Leading to

Ψ(zX , zY ) = Ψ̃(TzX + bX , SzY + bY )

For theX component this gives

fX(zX) = f̃X(TzX + bX)

such that
f−1X (x) = T−1

(
f̃−1X (x)− bX

)
because (f ◦ g)−1 = g−1 ◦ f−1. And for the Y component this gives,

fY (fX(zX), zY ) = f̃Y (f̃X(TzX + bX), SzY + bY )

Finally we get the following relation for the causal mechanism

fY (x, zY ) = f̃Y (fX(zX), SzY + bY ) = f̃Y (x, SzY + bY )

Proposition 3.5. Under the assumptions of Theorem 3.4, assume additionally strict positivity of
p(x, zY ) for almost all zY . Then, for any x in the support of P (X), E

[
Y |do(X = x)

]
is identifi-

able from the observation of P (X,Y ) with adjustment formula

E
[
Y |do(X = x)

]
= EZY ∼P (ZY )

[
f̃Y (x, SZY + b)

]
= EZ̃Y ∼P (Z̃Y )

[
f̃Y (x, Z̃Y )

]
, (3.6)

where P (Z̃Y ) and f̃Y is the solution identified in Theorem 3.4.

Proof. Consider a given x in the support of p(X), the above backdoor adjustment require p(y|X =
x, zY ) to be well defined for almost any zY . Given our generative model of Section 5.1, this amounts
to having f unambiguously defined for almost any zY . As fY is only unambiguously identified on
the support of the observational distribution p(x, zY ), it is necessary and sufficient to have strict
positivity of p(x, zY ) for almost all zY . The adjustment formula using ZY is given by

E
[
Y |do(X = x)

]
= EZ2∼P (ZY )

[
f(x,ZY )

]
Using Theorem 3.4 we can rewrite the expression of function f such that

E
[
Y |do(X = x)

]
= EZY ∼P (ZY )

[
f̃Y (x, SZY + b)

]
.

Moreover, we can replace the (unknown) latent variable distribution P (Z2) with the estimated latent
variable distribution P (Z̃2) to obtain the result

E
[
Y |do(X = x)

]
= EZ̃Y ∼P (Z̃Y )

[
f̃Y (x, Z̃Y )

]
. (A.13)
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Proposition 3.6. If there exists (l, q) such that P (L = l, Q = q) > 0 and both ΣXl and ΣYq are
positive definite, then the positivity assumption on p(x, zY ) in Proposition 3.5 is satisfied.

Proof. As p(x, zY ) is the pushforward of p(zX , zY ) by an invertible, continuous, differentiable
almost everywhere, function Ψ defined in the proof of Theorem 3.4. Therefore, p(x, zY ) is strictly
positive if and only if p(zX = f−1X (x), zY ) is strictly positive. Since p(zX , zY ) is a Gaussian
mixture, it is sufficient to have at least one non-degenearate mixture component occurring with
non-zero probability strict positivity (see Assumption 3.3)..

B Structural causal models

Causal dependencies between variables can be described using Structural Causal Models (SCM) [27].

Definition B.1 (SCM). An n-variable SCM is a tripletM = (G,S, PU ) consisting of:

• a directed acyclic graph G with n vertices,

• a set S = {Vj := fj(Paj ,Zj), j = 1, . . . , n} of structural equations, where Paj are the
variables indexed by the set of parents of vertex j in G,

• a joint distribution PZ over the exogenous variables {Zj}j≤n.

Due to the directed acyclic structure of G, for each value of the exogenous variables, S leads to
a unique solution for the vector of so-called endogenous variables V = [V1, . . . ,Vn]>, such that
the distribution PZ entails a well-defined joint distribution over the endogenous variables P (V ).
For the purpose of the present work, we adopt a very general setting by: (1) not enforcing joint
independence between the exogenous variables, allowing them to encode hidden confounding, (2)
allowing endogenous and exogenous variable to be vector-valued. A given set of random variables,
there may be described by different SCMs, e.g. by making different choices of grouping components
in vector variables Vk, or by choosing which will appear as exogenous or endogenous variables. We
may switch between different such choices, provided those choices make a equivalent predictions
regarding interventions that we introduce next.

We will consider do-interventions in SCMs involve replacing one or more structural equation by a
constant and modifying G accordingly such that parents of the intervened equations are removed. An
intervention transforms the original modelM = (G,S, PZ) into an intervened modelMdo(Vk=vk) =(
Gdo(Vk=vk),Sdo(Vk=vk), P

do(Vk=vk)
Z

)
, where vk is the constant parameterizing the intervention.

B.1 Unmeasured confounding and backdoor criterion

In the standard setting of causal effect estimation, one focuses on a graph comprising a pair of
endogenous variables (X,Y ) such that G contains the edge X → Y . Hidden counfounding can
then be encoded by non-independence of the respective exogenous variables ZX and ZY of these
nodes, which we represent as a dashed bidirectional arrow in Figure 1a. Our framework amounts
to constraining the structure of this hidden confounding, which is assumed to be representable as
an hidden discrete common cause of two hidden latent variables ZX and ZY , as described by the
causal diagram of Figure 1b, which does not have any dependence between exogenous variables
of the nodesX and Y , because confounding is now explicitly represented by a common cause H .
The additional variables appearing in this new graph, if they were to be observed, could be used
to estimate the interventional probability P (Y |do(X = x)) because they satisfied the so-called
backdoor criterion [27]: they block all backdoor paths betweenX and Y , i.e. those going through a
parent ofX . Although latent variable are unobserved, additional assumption may allow to identify
them from observational data. In particular, one way is to formulate the observations as a function of
the latents, which can be done by introducing an invertible mapping φ : ZX → X , leading to the
causal diagram of Figure 1c.
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We will focus on a case where it can be shown that we can infer and useZY as a backdoor adjustment
variable, which leads to the following formula for the interventional distribution

P (Y |do(X))] =

∫
P (y|x, zy)p(zy)dzy .

C Twins dataset

The remaining confouding variables are: ‘risk factor, Lung’, ‘risk factor Hemoglobinopathy’, ‘risk
factor, Incompetent cervix’, ‘mom place of birth’, ‘race of child’, ‘total number of births before twins’,
‘trimester prenatal care begun, 4 is none’, ‘number of live births before twins’, ‘married’, ‘risk factor,
Anemia’, ‘risk factor, Hypertension, chronic’, ‘risk factor, RH sensitization’, ‘num of cigarettes
/day, quantiled’, ‘risk factor, tobacco use’, ‘education category’, ‘state of occurence FIPB’, ‘medical
person attending birth’, ‘quintile number of prenatal visits’, ‘US census region of mplbir’, ‘dad race’,
‘place of delivery’, ‘risk factor, Renal disease’, ‘mom race’, ‘risk factor, Cardiac’, ‘US census region
of stoccfipb’, ‘risk factor, Previous infant 4000+ grams’, ‘US census region of brstate’, ‘birth month
Jan-Dec’, ‘risk factor, Eclampsia’, ‘risk factor, Other Medical Risk Factors’, ‘octile age of father’,
‘risk factor, alcohol use’, ‘dad hispanic’, ‘num of drinks /week, quantiled’, ‘risk factor, Herpes’, ‘mom
hispanic’, ‘risk factor, Hypertension, preqnancy-associated’, ‘state of residence NCHS’, ‘risk factor,
Uterine bleeding’, ‘risk factor, Diabetes’, ‘sex of child’, ‘risk factor Hvdramnios/Oliqohvdramnios’,
‘risk factor, Previos pre-term or small’, ‘adequacy of care’.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, claims are accurate.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed in Section 7 with a separate ‘Limitations’ section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Proofs to all results are given in the Appendix A. In addition, a proof sketch
for the main result is given in the main text.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 5 contains information about all the parameters used in the simulation
results. Code to generate the synthetic data and to implement the method is provided in an
anonymized zip file in the Supplementary Material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, link to code will be provided on the first page conditional on acceptance.
It is provided with the submission as a zip file in the Supplementary Material to guarantee
anonymity.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: These details can be seen in the provided code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: While no formal error bars are shown, we show results for a number of
draws from the data generating process and report the distribution of results in the synthetic
data experiments. In the real-world data application, we show results for a number of
hyperparameter choices and seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: That information is provided in the relevant Sections of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics ?
Answer: [Yes]
Justification: Yes, the research conducted here conforms the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: While the paper does not discuss negative societal impacts, it emphasizes that
the results for the proposed causal inference technique rest on assumptions that need to be
fulfilled for the method to work as expected.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: No risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The use of code by other researchers is acknowledged.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, has curated licenses for some datasets. Their
licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Code with documentation is provided.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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